Experiments with Game Tree Search in Real-Time Strategy Games
نویسنده
چکیده
Game tree search algorithms such as minimax have been used with enormous success in turn-based adversarial games such as Chess or Checkers. However, such algorithms cannot be directly applied to real-time strategy (RTS) games because a number of reasons. For example, minimax assumes a turn-taking game mechanics, not present in RTS games. In this paper we present RTMM, a real-time variant of the standard minimax algorithm, and discuss its applicability in the context of RTS games. We discuss its strengths and weaknesses, and evaluate it in two real-time games.
منابع مشابه
Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملGame-Tree Search over High-Level Game States in RTS Games
From an AI point of view, Real-Time Strategy (RTS) games are hard because they have enormous state spaces, they are real-time and partially observable. In this paper, we present an approach to deploy gametree search in RTS games by using game state abstraction. We propose a high-level abstract representation of the game state, that significantly reduces the branching factor when used for game-t...
متن کاملPuppet Search: Enhancing Scripted Behavior by Look-Ahead Search with Applications to Real-Time Strategy Games
Real-Time Strategy (RTS) games have shown to be very resilient to standard adversarial tree search techniques. Recently, a few approaches to tackle their complexity have emerged that use game state or move abstractions, or both. Unfortunately, the supporting experiments were either limited to simpler RTS environments (μRTS, SparCraft) or lack testing against state-of-the-art game playing agents...
متن کاملAutomatic Learning of Combat Models for RTS Games
Game tree search algorithms, such as Monte Carlo Tree Search (MCTS), require access to a forward model (or “simulator”) of the game at hand. However, in some games such forward model is not readily available. In this paper we address the problem of automatically learning forward models (more specifically, combats models) for two-player attrition games. We report experiments comparing several ap...
متن کاملHigh-Level Representations for Game-Tree Search in RTS Games
From an AI point of view, Real-Time Strategy (RTS) games are hard because they have enormous state spaces, they are real-time and partially observable. In this paper, we explore an approach to deploy gametree search in RTS games by using game state abstraction, and explore the effect of using different abstractions over the game state. Different abstractions capture different parts of the game ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1208.1940 شماره
صفحات -
تاریخ انتشار 2012